
Higgs BSM Benchmarks

Snowmass Higgs Working Group

S. Dawson, A. Gritsan, H. Logan, J. Qian, C. Tully, R. Van Kooten

BNL, April 3, 2013

4-Prong Approach

- Look for extra Higgs particles present in many models
- Look for exotic and rare decays of Higgs
- Precision measurements of Higgs couplings
- Other precision measurements of Higgs properties, such as spin, CP admixtures, Higgs self coupling from HH production, total Higgs width, invisible width, mass

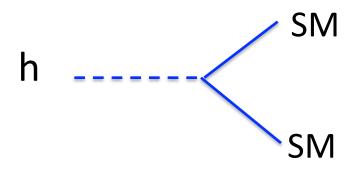
Extended Higgs Sectors

- Many models have more than one Higgs boson
- As a representative set, we will consider:
 - Models with an additional Higgs Singlet
 - Composite Higgs Models
 - 2 Higgs Doublet Models
 - MSSM and NMSSM

Also, effective Lagrangian fits to Higgs couplings, See session 4

Higgs Singlet Model

- Singlet, S, mixed with SM Higgs, H_{SM}
 - S could be hidden sector field
 - Communicates to observed sector through Higgs couplings

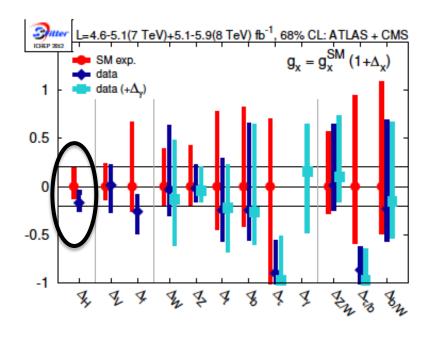

$$L_{eff} = D_{\mu} \Phi D^{\mu} \Phi^{\dagger} + |D_{\mu}S|^{2} + \mu^{2} \Phi \Phi^{\dagger} + m_{S}^{2} |S|^{2} - \lambda (|\Phi \Phi^{\dagger}|)^{2} - \rho S^{4} - \kappa (\Phi^{\dagger} \Phi) S^{2}$$

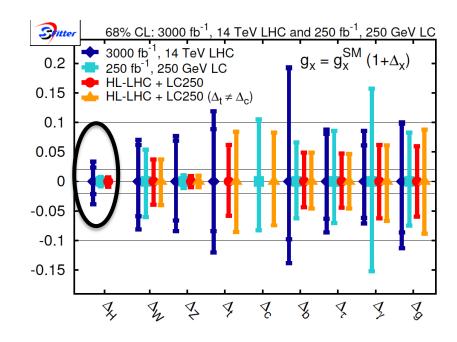
• Physical Higgs: h, H

$$h = \cos \theta_h H_{SM} + \sin \theta_h S$$
$$H = \sin \theta_h H_{SM} - \cos \theta_h S$$

Higgs Singlet Model

Universal rescaling of Higgs couplings


$$(1+\Delta_H)g_{hXX}^{SM}$$


$$rac{\Delta_H}{g_{hXX}^{SM}} \sim -rac{\sin^2 heta_h}{2}$$

New decays possible

$$H \rightarrow hh$$

Higgs Singlet: Present and Future

Two Higgs Doublet Models

– Parameters are α (mixing in neutral h/H sector), tan β

$$-L = -g_{hii}\frac{m_i}{v}\overline{f}_i f_i h - g_{hVV}\frac{2M_V^2}{v}V_\mu V^\mu h$$

- 4 possibilities for Higgs coupling assignments

	I	II	Lepton Specific	Flipped
g_{hVV}	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
$g_{ht\overline{t}}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$g_{hb\overline{b}}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$
$g_{h au^+ au^-}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$

Type II is MSSM – like 2 Higgs doublet model

2 Higgs Doublet Models: Plans

- Search reach for H⁺,H,A at future machines
- Limits on tan β , α plane for fixed H⁺, A
 - Consider both decoupling limit (heavy Higgs) and
 M_{H+}~300 GeV
- Include restrictions from B physics
- Higgs search reach and coupling limits in MSSM and NMSSM
 - Other (non-Higgs) particles in MSSM and NMSSM in loops can affect Higgs couplings

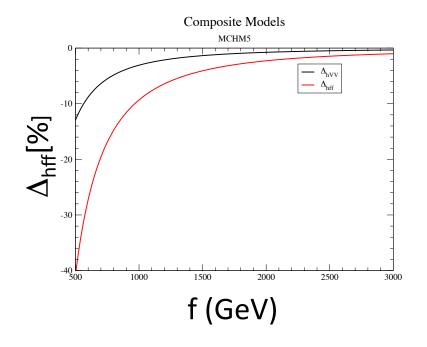
Composite Models

Parameterize by effective operators

$$L_{eff} = \frac{2c_H}{f^2} \mid \Phi D_{\mu} \Phi^{\dagger} \mid^2 + \frac{c_y}{f^2} \frac{m_f}{v} \left(\Phi^{\dagger} \Phi \overline{\psi}_L \Phi f_R + h.c. \right)$$

- c_H, c_v predicted in specific models
- $\Delta g_{hXX}^{\sim} v^2/f^2 = \zeta^2$

$$\Gamma(h \to f\overline{f}) = \Gamma(h \to f\overline{f})_{SM} \left(1 - \zeta(2c_y + c_H) \right) \qquad \Delta_f = -\frac{\zeta}{2} (2c_y + c_H)$$


$$\Gamma(h \to W^+W^-) = \Gamma(h \to W^+W^-)_{SM} \left(1 - \zeta c_H \right) \qquad \Delta_V = -\frac{\zeta}{2} c_H$$

- Precision electroweak measurements restrict f
- Interesting effects in 2 Higgs production due to effective vertex: $t\bar{t}hh$

Examples of Composite Models

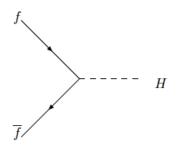
Models differ in high scale fermions representations

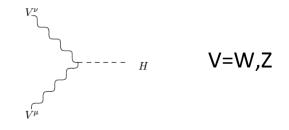
- MCFM5:
$$1 + \Delta_V = \sqrt{1 - \zeta}$$
, $1 + \Delta_f = \frac{1 - 2\zeta}{\sqrt{1 - \zeta}}$
- MCFM4: $1 + \Delta_V = 1 + \Delta_f = \sqrt{1 - \zeta}$

- 10% measurement of $\Delta_{\rm hff}$ gets to 1 TeV scale
- 2% measurement gets to 2 TeV

Composite Model is Special Case

Yukawa couplings:


$$-i\frac{m_f}{v}\bigg(1+\Delta_f\bigg)$$


Couplings to gauge bosons:

$$-i\frac{2M_V^2}{v}\left(1+\Delta_V\right)$$

See Session 4

Working Group Output

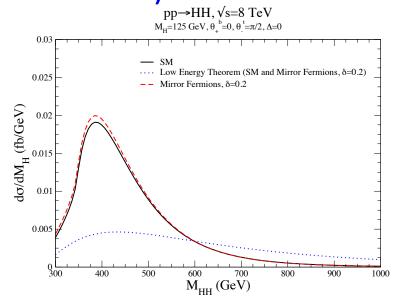
General coupling fits+ fits within specific models

	LHC300	LHC3000	ILC250	ILC500	ILC1TeV	CLIC 3 TEV	μμ
Δ_{H}							
Δ_{V}							
Δ_{f}							
Δ_{b}							
$\Delta_{ au}$							
$\Delta_{\sf V}$							

See recommendations of LHC Higgs Cross Section Working Group

Higgs Self-Couplings

Need to measure hhh coupling


$$V = \frac{M_h^2}{2}h^2 + \frac{M_h^2}{2v}h^3 + \frac{M_h^2}{8v^2}h^4$$

- At ILC: $e^+e^- \rightarrow Zhh$
- At LHC, VBF: $W^+W^- \to hh$ and $gg \to hh$

Small rates limit sensitivity

2 Higgs Production at the LHC

- In simple models, get approximately SM rate
- Large 2 Higgs rate could be smoking gun for composite Higgs models (which have new contributions)

Require parameters to give SM single H production rate and be consistent with precision EW

Higgs Precision Properties

Spin/ CP admixtures

$$L \sim \overline{f}(a+b\gamma_5)fh$$

- Total Higgs width
- Invisible width
- λ_{hhh}
- Make table as above

Higgs Working Group

- Many topics to be addressed
- Please add to our collection of 1pagers

http://quark.phy.bnl.gov/~dawson/1pagers

- (These will help us fill in gaps of what needs to be done!)
- Lots of work and we welcome volunteers
- Much information in literature....point us to it